
IJARCCE
ISSN (Online) 2278-1021

ISSN (Print) 2319 5940

International Journal of Advanced Research in Computer and Communication Engineering
Vol. 5, Issue 2, February 2016

Copyright to IJARCCE DOI 10.17148/IJARCCE.2016.52109 493

A Survey on Parallel Mining of frequent itemsets

in MapReduce

Indumathi S
1
, Kavya D S

2
, Madhusudhan V

3

M.Tech, Computer Science and Engineering, REVA ITM, Bangalore, India1,2,3

Abstract: This paper shows the various parallel mining algorithms for frequent itemsets mining. We summarize the
various algorithms that were developed for the frequent itemsets mining, like candidate key generation algorithm, such

as Apriori algorithm and without candidate key generation algorithm, such as FP-growth algorithm. These algorithms

lacks mechanisms like load balancing, data distribution I/O overhead, and fault tolerance. The most efficient the recent

method is the FiDoop using ultrametric tree (FIUT) and Mapreduce programming model. FIUT scans the database only

twice. FIUT has four advantages. First: I reduces the I/O overhead as it scans the database only twice. Second: only

frequent itemsets in each transaction are inserted as nodes for compressed storage. Third: FIU is improved way to

partition database, which significantly reduces the search space. Fourth: frequent itemsets are generated by checking

only leaves of tree rather than traversing entire tree, which reduces the computing time.

Keywords: MapReduce, frequent itemsets, mining algorithm, ultrametric tree.

I.INTRODUCTION

Data mining is a process of discovering the pattern from
the huge amount of data. There are many data mining

technics like clustering, classification and association

rule. The most popular one is the association rule that is

divided into two parts i) generating the frequent itemset

ii) generating association rule from all itemsets.

Frequent itemset mining (FIM) is the core problem in the

association rue mining. Sequential FIM algorithm suffers

from performance deterioration when it operated on huge

amount of data on a single machine.to address this

problem parallel FIM algorithms were proposed.

There are two types of algorithms that can be used for

mining the frequent itemsets first method is the candidate

itemset generation approach and without candidate

itemset generation algorithm. The example for candidate

itemset generation approach is the Apriori algorithm and

for, without candidate itemsets generation is the FP-

growth algorithm.

The important data-mining problem is discovering the

association rule between the frequent itemset.in order to

find best method for mining in parallel, we explore a

spectrum for trade-off between computation,
synchronization, communication, memory usage. Count

distribution, data distribution, candidate distribution are

three algorithms for discovering the associate rule

between frequent itemsets.

Minimizing communication is the focus of the count

distribution algorithm.it will thus even at the expense of

winding up redundant duplication computation in

parallel.

The data distribution effectively utilizes the main

memory of the system.it is communication-happy

algorithm. Here nodes to all other nodes broadcast the
local data.

The candidate distribution algorithm for both, to segment

the database upon the different transaction support and the

patterns, exploits linguistics of a particular problem. Load
balancing is also incorporated by this algorithm.[1]

II. RELATED WORK

Sandy moen’s at al,[2] proposed two new method for

mining frequent itemset in parallel on the Mapreduce
framework

First method is the Dist-Eclat. This method distributes the
search space evenly as possible among mapper. This

technique mines large dataset but not massive datasets. This

algorithm operates in three steps:

We use vertical database rather than transaction database.in

the first step the vertical database is divided into equal sized

blocks called shards and distributed to available mappers.

Each mapper extracts the frequent singletons from each

block and gives to the reducer. The reducer collects all the

frequent tested. In the second step the set of frequent

itemsets of size K ae generated (Pk). Frequent singleton

itemsets are distributed to the mappers. Each mapper runs

Éclat [3] to find frequent K-sized superset of items. The

reducer collects all the frequent K-sized supersets of items
and distributes it to the next batch of mappers. Round Robin

is used for the distribution of the frequent itemset. The third

step is the mining the prefix tree. The mutual information

between the mappers are independent, so mapper complete

each step independently.

Demerit:

This method returns a very large number of sets so this

method is prohibited on Hadoop

Second method is the BigFIM over the problem of Dist-

Eclat. There are 3 steps in this method

In the first K-FI’s are generated using breath-first method.

IJARCCE
ISSN (Online) 2278-1021

ISSN (Print) 2319 5940

International Journal of Advanced Research in Computer and Communication Engineering
Vol. 5, Issue 2, February 2016

Copyright to IJARCCE DOI 10.17148/IJARCCE.2016.52109 494

Every mapper takes the database and gives itemsets for

which, we want to know the support .the reducer takes all

itemsets and returns only the global frequent itemsets.

These itemsets are considered as candidates and

distributed to the mappers for breath-first search. This

process continues K-times to generate K-FI’s.next step is
computing the possible extension.

The mapper gives local Tid-list to the reducer the reducer
combines the local Tid-lists, to one Tid-list, and assigns

prefix to mappers. The mapper in the final step works on

individual prefix group. A prefix group fits in the

memory as a conditional database. The diffsets are used

to mine the frequent itemsets in the conditional database.

Enhilvathani et al [4] have used the Apriori algorithm for

frequent item set generation on mapreduce programing

model. For implementation of algorithm is given in five

steps

In the first step the transaction dataset is partitioned that

is Divided into n subsets done that are of map phase.in

the second step the data subsets are formatted as <key1,

value1>pair, key is Tid(Transaction id).

The mapreduce task is executed in third phase. The

record of input item subsets are scanned by the Map

function and candidate item sets input are generated by

the map function

In the fourth step the output of the map function

combined by combiner function in the local and it
outputs <itemset, support count>, the intermediate pair

generated by combiner function is divided by partition

function in to “r” different partitions. Finally reduce

function executes the reduce task, the key item set are

sorted. In the supported count of the same candidates is

added by reduce function to get the actual support count

of the candidate in the transaction database. Compare

with the minimum support count to gets the frequent item

set Lp.

Demerit

Apriori algorithm has to scan the entire database

repeatedly.

Suraj Ghadge et al [5] gives the overview of FP-Growth

algorithm. The idea is to build one FP- tree, and divide

into many parts and distribute them to different threads.

The FP-algorithm is divided into two parts:

1) Building FP-tree

Given minimum support and transaction database, the

database is scanned once. All frequent itemsets(F) along

with the itemset support is collected , the F is sorted in

support-desenting order as FList(frequent itemset list0.

The root of FP-tree is labelled “null”, for each of

transaction in database do the following.

2) mining from FP-tree

Iterative procedure: set of conditional pattern base is

produced in each step and calculated together Procedure

FP Growth (Tree, α)

Algorithm:

Begin

/*Mining single prefix−path FP−tree */ if Tree contains a

single prefix path then Begin

Let P be the single prefix−path part of Tree;

Let Q be the multipath part with the top branching node

Replaced by a null root;

For each combination (denoted as β) of the nodes in the

path P do

Generate pattern βUα with support = minimum support of

Nodes in β;

Let freq pattern set(P) be the set of patterns so generated;

End

Else let Q be Tree;

/* Mining multipath FP−tree */

For each item ai in Q do Begin

Generate pattern β = aiUα with support = ai.support;

Construct β’s conditional pattern−base and then β’s

Conditional FP−tree Tree β;

If Tree β = φ(13) then call FP−growth(Tree β, β);

Let freq pattern set(Q) be the set of patterns so generated;

End

Return (freq pattern set(P)Ufreq pattern set(Q)U(freq

Pattern set(P)× frequent pattern set

Demerits:

It still consumes large amount of time to operate on large

data

Yaling Xun et al, [6] proposed an ultrametric tree for

mining frequent iteam set ultrametric provides four
advantages ones FP and Apriori like partitioning a database

in a minimizing input output and compressed storage.

FiDoop is algorithm designed to overcome the problems

like load balancing, fault tolerance, automatic

parallelization and distribution on large cluster.

Comparing with ultrametric tree algorithm FiDoop has

many other features. In FiDoop the concurrently and

independently decomposes itemsets small ultrametric tree is

constructed by the reduces to perform combination

operation as Well as mining these trees in parallel.

The FIUT algorithm consist of two phases. Two round of

scanning is done in the first phase.

In the first phase support of all item set are computed and

frequent item set are generated. In second scan infrequent

item set are pruned in each transaction record, resulting in

k-item set [K_ number of frequent items]. In phase two n

item set are decomposed in to K-FIU tree, where

K+1<=n<=M (M is the maximal value of K), and unioning

original K-item sets. Mining of are frequent k item sets

based on the leaves of K-FIUtree is done in the second

phase without traversing the tree. The computing time is
reduced in FIUT.

IJARCCE
ISSN (Online) 2278-1021

ISSN (Print) 2319 5940

International Journal of Advanced Research in Computer and Communication Engineering
Vol. 5, Issue 2, February 2016

Copyright to IJARCCE DOI 10.17148/IJARCCE.2016.52109 495

There are three steps in FiDoop

In transaction database stored in HDFC in the form of

multiple input files in the form of < Long writable offset,

Text record >, the frequency of items is computed by the

mapper and mapper generates local one item set the local

one item set from different mapper are sorted and merged

given to reducer as global one item set the minsupport is

applied to prune infrequent item set .The output from

first map reduce is stored in the form of < Text item, long

writable count >, stored in file named F-file this is given
as input to the second mapreduce job FiDoop.

One item set from the first mapreduce job is given to the
second mapreduce; second round of scan is applied to

prune infrequent item set. The mapper returns a pair <

Array Writable item sets, Long Writable One >, as on

output that is shuffled and combined for the second job’s

reducer. After combination, reducer gives key value pair.

The output of second mapreduce is < In Writable item

number, Map Writable < Array Writable k-item, Long

Writable Sum >>.

The third mapreduce is imported and expensive phase it

is dedicated to 1) K-FIU tree construction 2) item set

decomposition 3) frequent item set mining. The K-item

sets given by the second mapreduce is decomposed into a

list of small –sized sets by the mapper, this
decomposition result is merged to construct FIU tree. The

decomposition process is performed in parallel on each

mapper. The map function returns <key, value> pair key

is number of items value is FIU tree. Contains leaf and

non-leaf node includes node –link and item name leaf

node includes support and item name by their single

reducer can be given item set with same number of items.

Constructing K2-FIU and mining all frequent item sets

without traversing the tree is done by the reducer

III. CONCLUSION

Mapreduce programming model is applied for existing

parallel mining algorithm for mining frequent itemsets

from database and solves the load balancing and

scalability.

This paper gives the overview of algorithms designed for

parallel mining of frequent itemsets .The Apriori and FP

tree algorithm were used for mining frequent itemsets.
Main drawback of Apriori algorithm is that the database

has to be scanned many number of times and huge

candidate keys needs to be exchanged between the

processor. I/O and synchronization are the other

problems in the Apriori algorithm.

The disadvantage of FP-growth, however, lies within the

impracticableness to construct in-memory FP trees to

accommodate large-scale databases. This drawback

becomes a lot of pronounced once it comes to huge and

two-dimensional databases.

To overcome these problems, FiDoop, an parallel

frequent itemset mining algorithm is developed. FiDoop

incorporates the ultrametric tree (FIU) rather than Apriori

or FP-growth algorithm. The FIU tree achieves

compressed storage. FiDoop runs three MapReduce jobs.

The third MapReduce job is important. in third job the

mapper independently decomposes itemsets and reducer

built the ultrametric trees.

REFERENCES

[1] “Parallel Mining of Association rule.” Rakesh Agarwal ,John C

Safer

[2] “Frequent Itemset Mining for Big Data Sandy Moens, Emin Aksehirli

and Bart Goethals Universiteit Antwerpen, Belgium

[3] “ECLAT Algorithm for Frequent Itemsets Generation “Manjit kaur ,

Urvashi Grag Computer Science and Technology, Lovely

Professional University Phagwara, Punjab, India . International

Journal of Computer Systems (ISSN: 2394-1065), Volume 01– Issue

03, December, 2014 Available at http://www.ijcsonline.com/

[4] “Implementation Of Parallel Apriori Algorithm On Hadoop Cluster”

A. Ezhilvathani1, Dr. K. Raja. International Journal of Computer

Science and Mobile Computing

[5] “Frequent Itemsets Parallel Mining Algorithms “ Suraj Ghadge,

Pravin Durge, Vishal Bhosale,Sumit Mishra. Department of

Computer Engineering, JSPM’s ICOER. International Engineering

Research Journal (IERJ) Volume 1 Issue 8 Page 599-604, 2015,

ISSN 2395-1621

[6] “FiDoop: Parallel Mining of Frequent Itemsets Using MapReduce”

Yaling Xun, Jifu Zhang, and Xiao Qin, Senior Member, IEEE
.

